公司简介
公司简介
企业资质
全球彩票开户
 
产品列表
热风炉
焚烧炉————————————(垃圾、木屑、化工氧化钴、布料、橡胶等)
生物质锅炉
真空锅炉
卧式燃油(气)蒸汽锅炉
燃煤锅炉
立式蒸汽锅炉
冷凝式燃气蒸汽锅炉
冷凝常压热水锅炉
导热油锅炉
承压热水锅炉
常压电加热热水型系列锅炉
壁挂式燃气锅炉
CWNS型系列锅炉
CLHS型系列锅炉
公司动态
燃气锅炉3 改进热力循环方式
上传时间:2019/9/8 点击率:

  一般垃圾燃烧发电机组都是属于小机组,运行上远远没有大机组那么复杂。但是为什么我们成长有人快有人慢呢?只是因为人家有对的学习方法以及坚持不懈的力量,一起来看下主控应知应会基础知识吧。

  锅炉升停炉过程中停止进水的时候,开启再循环门,使炉水在 省煤器— 汽包— 再循环管— 省煤器进口联箱 —省煤器之间形成小型循环,使省煤器中的水流动,从而保护省煤器不致超温;正常运行的时候禁止开启再循环门,因为再循环管的阻力比省煤器管道阻力小,故大部分给水会通过再循环管进入汽包,省煤器管壁得不到冷却,所以再循环管主要是用来保护省煤器的,但在冷炉升炉的时候可以开启再循环门来加快上水速度,若运行中省煤器再循环门未关闭上水,由于省煤器管道的阻力要大于省煤器再循环管道的阻力,锅炉给水将直接进入汽包,而汽包此时的温度很高,被相对温度很低的给水冷却,会产生很大的热应力可能造成管子和焊缝的损坏。

  3、炉膛负压不正常的减小或变正压,从检查孔、门、炉墙不严密处向外喷烟气和水蒸气,严重时听到泄漏声。

  3、如损坏严重时,致使锅炉气压迅速降低,给水消耗过多,经增加给水后仍看不到汽包水位计的水位时应停止进水。处理事故时必须保证运行炉的正常给水。

  4、在炉内的蒸汽基本消失后,方可停引风机。5、如锅炉水冷壁损坏不严重,水量损失不多,能保持汽包的正常水位,且不致很快扩大故障时(冲坏邻近管子等),可适当降低锅炉的蒸发量,维持短时间运行,尽快转移负荷或投入备用炉。如故障炉的损坏情况继续加剧时(响声增大,漏水增大和危及邻近管子时),则应立即停炉。

  3、风机电流增加或有不正常的晃动,故障严重时,电流超过额定值或电流突然到零,则红灯灭,绿灯闪光,跳闸警报报警。

  4 、风机或电动机轴承缺油,油变质,冷却水量小或中断,以及轴承内掉入杂物而影响轴承温度高。

  2、全开连续排污门,保持锅炉水位。必要时停用给水自动调整器,改手动调整,加强锅炉给水及底部放水排污工作。

  4、通知化水人员采集炉水水样分析,并按照分析结果进行排污,改善炉水质量。

  1、缓慢开启放水门,注意观察水位,如水位计中有水位下降,表明为轻微满水。

  2、若不见水位,关闭汽门,并缓慢关闭放水门,注意观察水位,如水位计中有水位上升,表明为轻微缺水。

  3 、如仍不见水位,关闭水门,再缓慢开启放水门,若水位计中有水位下降,表明严重满水;若无水位出现,则表明严重缺水。

  这是因为烟灰和水垢的导热系数比金属要小得多,如果受热面管外积灰或管内结垢,不但影响传热的正常运行,浪费燃烧,而且还会使金属壁温升高,以致过热器烧坏,危及锅炉设备安全运行。

  因此,在锅炉运行中,必须进行吹灰排污和保证合格的汽水品质,以保证金属受热面管子内外壁面的清洁,以利于受热面正常传热,保障锅炉机组安全运行。

  虚假水位是锅炉运行时不真实的水位。虚假水位的产生是由于当汽包压力突降时,炉水饱和温度下降到压力较低时的饱和温度,使炉水大量放出热量来进行蒸发。

  于是炉水内的汽泡增加,汽水混合物体积膨胀,促使水位很快上升,形成虚假水位。当汽包压力突升时,则相应的饱和温度提高一部分热量被用于加热炉水,而用来蒸发炉水的热量则减少,炉水中汽泡量减少,使汽水混合物的体积收缩,促使水位很快下降,形成虚假水位。此外当锅炉内热负荷增加或骤减时,水的比容将增大或减小,也会形成虚假水位。锅炉负荷突变、灭火、安全门动作、燃烧不稳时,都会产生虚假水位。

  水位计堵塞。无论汽侧堵塞还是水侧堵塞,水位均偏高,水位计水侧堵塞时,水位计停止波动。

  当负荷剧增,气压下降时,水位计短时间增高。负荷剧增,压力下降,说明锅炉蒸发量小于外界负荷。因为饱和温度下降,炉水自身汽化,使水冷壁内汽水混合物种蒸汽所占体积增加,将水冷壁的水排挤到汽包中,使水位升高。反之当负荷剧减,压力升高时,水位短时间降低。

  运行中对锅炉进行监视的主要内容有:主蒸汽压力、温度、汽包水位、炉膛负压、各受热面处温度、布袋入口温度等。

  在运行中要合理调整燃烧,使炉内火焰中心保持适当位置,保证适当的过剩空气量,防止缺氧燃烧;发现积灰结焦时应及时消除,按规定进行吹灰;避免超出力运行,炉温控制在规定范围内;锅炉严密性要做好,防止漏风;提高检修质量并及时对锅炉设备不合理的地方进行改造。

  锅炉在冷态启动时,各部位的金属温度与环境温度一样。一般规定:冷炉上水时,进入汽包的水温不高于 90℃,水位到达汽包正常水位100mm 处所需时间:夏季不少于 1h,冬季不小于 2h。如果锅炉金属温度较低,而水温较高时,应适当延长上水时间。

  锅炉停用时,如果管子内表面潮湿,外界空气进入,会引内表面金属的氧化腐蚀。防止这种金属腐蚀的发生,停炉后要进行保养,不同情况下停炉保养的方法有:

  2、给水溢流防腐,停炉后转入备用或处理非承压部件缺陷,停用时间在 30 天左右,防腐期间,应设专人监视与保持汽包压力在规定范围内,防止压力变化过大。

  二次风从位于前拱和后拱炉壁上一系列喷嘴送入炉内。加强燃烧室重化工气体的扰动促使未燃气体燃尽,增加烟气在炉膛内的停留时间,以及调节炉膛的温度。运行中:含氧量小于 6%且炉膛温度急剧上升超极限时,应启动二次风机供给二次风,二次风量约占总空气量的 20%左右。

  17、锅炉一般设计中把过热器受热面都设在烟道,为何垃圾焚烧炉把过热器受热面设在第三烟道?

  因为垃圾焚烧炉中燃料垃圾成分复杂含有大量 CL、H 原子及其他有机物燃烧反应后易产生大量腐蚀性气体,而且一烟道燃烧高温在 650℃以上存在高温腐蚀破坏。所以不能像一般燃煤锅炉那样把过热器设在烟道,而是设计在温度相对较低的第三烟道。

  1、烟气处理不合格,使大量酸性气体由引风机叶轮带出,使叶轮受酸性气体低温腐蚀影响。

  3、引风机叶轮入口温度过低,使烟气中酸性气体结露产生腐蚀,启停炉时间停用烟气处理系统产生的腐蚀、磨损。

  这是因为烟灰和水垢的导热系数比金属小得多,也就是说,烟灰和水垢的热阻较大。

  如果受热面管外积灰或管内结水垢,不但影响传热的正常运行,浪费燃料,而且还会使金属壁温升高,以致过热烧坏,危及锅炉设备安全运行。因此,在锅炉运行中,必须经常进行吹灰、排污和保证合格的汽水品质,以保证受热面管子内外壁面的清洁,利于受热面正常传热,保障锅炉机组安全运行。

  (1)炉膛大面积结焦时,会使炉膛吸热量大大减少,炉膛出口烟气温度过高,造成过热汽温偏高,导致过热器管壁超温。

  (3)炉膛局部结焦后,使结焦部分水冷壁吸热量减少,循环流速下降,严重时会使循环停滞而造成水冷壁爆管事故。

  (4)由于结焦,受热面吸热量减少,排烟温度上升,降低了锅炉的出力和效率。

  (5)炉膛内结焦掉落时,可能砸坏冷灰斗水冷壁管,或者堵塞排渣口而使锅炉无法维持运行。

  水位计是运行人员监视锅炉正常运行的重要仪表,当所有水位计都损坏时,水位的变化失去监视,正常水位的调整失去依据。由于高温高压锅炉的汽包内储水量有限,机组负荷和汽水损耗在随时变化,失去对水位的监视,就无法控制给水量。

  当锅炉在额定负荷下,给水量大于或小于正常给水量的 10%时,一般锅炉几分钟就会造成严重满水或缺水。所以,当所有水位计损坏时为了避免对机炉设备的损坏,应立即停炉。

  锅炉停用后,如果管子内表面潮湿,外界空气进入,会引起内表面金属的氧化腐蚀。为防止这种腐蚀的发生,停炉后要进行保养。对于不同的停炉有如下几种保养方法:

  (2)给水溢流法防腐。停炉后转入备用或处理非承压部件缺陷,停用时间在 30 天左右,防腐期间应设专人监视与保持汽包压力在规定范围内,防止压力变化过大。

  (3) 改进热力循环方式,如采用中间再热循环、给水回热循环和供热循环等。

  主要有:排烟热损失、化学未完全燃烧热损失、机械未完全热损失、散热损失、灰渣物理热损失,其中排烟热损失。

  锅炉燃烧调整的首要任务是调整好燃料和风量的配合。烟气中的含氧量能够直观地反映风量的大小,指导运行人员或自动调节系统合理地调配风、粉比例。

  氧化锆氧量计是应用了添加了氧化钙或氧化钇的氧化锆氧离子导体,在两侧氧浓度不同时,氧离子由浓度高的一侧向浓度低的一侧迁移过程中在电极上产生电荷累积,从而建立电场的原理进行工作的。

  28 、锅炉升压过程中膨胀不 均匀的原因是什么?热力管道为什么要装有膨胀补偿器?

  升压过程中投入的燃烧器和油枪数目少,火焰充满度差,炉内各部分温度不均匀,水冷壁的吸热不均,各水冷壁管的水循环不一致,就出现膨胀不均的现象,某些管道或联箱在通过护板,或导架、支吊架及其它杂物阻碍,膨胀时受阻,产生较大的热应力,所以对膨胀量大的,自然补偿不满足要求的管道,要装有膨胀补偿装置,以使热应力不超过允许值。

  在拉伸试验中,当试样应力超过弹性极限后,继续增加拉力达到某一数值时,拉力不增加或开始有所降低,而试样仍然能继续变形,这种现象称为“屈服”。钢开始产生屈服时的应力称为屈服强度。钢能承受载荷(即断裂载荷)时的应力,称为极限强度。钢在高温长期应力作用下,抵抗断裂的能力,称为持久强度。

  金属在高温和应力作用下逐渐产生塑性变形的现象叫蠕变。对钢的性能影响:钢的蠕变可以看成为缓慢的屈服。由于蠕变产生塑性变形,使应力发生变化,甚至整个钢件中的应力重新分布。钢件的塑性不断增加,弹性变形随时间逐渐减少。蠕变使得钢的强度、弹性、塑性、硬度、冲击韧性下降。

  燃料中的硫燃烧生成 SO2 ,SO2 与烟气中的氧结合生成 SO3,当受热面的温度低于烟气的露点时,烟气中的水蒸气与 SO3 组合生成硫酸蒸汽,凝结在受热面上,造成受热面的低温腐蚀。空气预热器的冷端易出现低温腐蚀。

  实际液体在管道中流动时的阻力可分为两种类型:一种是沿程阻力,它是由于液体在管内流动,液体层间以及液体与壁面间的摩擦力而造成的阻力;另一种是局部阻力,它是液体流动时,因局部障碍(如阀门、弯头、扩散管等)引起液流显著变形以及液体质点间的相互碰撞而产生的阻力。

  闸阀用于切断和接通介质的流动,此阀不能作为调节阀用,闸阀必须处于全开或全关位置,闸阀不改变介质的流动方向,因而流动阻力较小,但密封面易磨损和泄漏,且开启行程大,检修较为困难。

  闸阀通常安装在直径大于 100mm 的管路上。截止阀具有严密性好、检修维护方便等优点,但流动阻力大,开关困难,所以一般用于直径小于 100mm 的管路上,作为启闭装置。直径小于 32mm 的截止阀,可以作为节流装置。

  热力系统中一、二次串联布置的疏水门、空气门,一次门用于系统隔绝,二次门用于调整或频繁操作,开启操作时应先开一次门,后开二次门,关闭操作时先关二次门,后关一次门。除非特殊情况,不得将一次门做为调整用,防止一次门门芯吹损后,不能起到隔绝系统的作用。

  手动阀门操作时应使用力矩相符的阀门扳手,操作时用力均匀缓慢,严禁使用加长套杆或使用冲击的方法开启关闭阀门。电动阀门的开关操作在发出操作指令后,应观察其开关动作情况,直到反馈正常后进行下一步操作。阀门要保温,管道停用后要将水放尽,以免天冷时冻裂阀体。阀门存在跑、冒、滴、漏现象,及时联系处理。

  (1)水锤:在压力管路中,由于液体流速的急剧变化,从而造成管中液体的压力显著、反复、迅速的变化,对管道有一种“锤击”的特征,称这种现象为水锤。(或叫水击。)

  1) 正水锤时,管道中的压力升高,可以超过管中正常压力的几十倍至几百倍,以 致使壁衬产生很大的应力,而压力的反复变化将引起管道和设备的振动,管道的应力交变变化,都将造成管道、管件和设备的损坏。

  2) 负水锤时,管道中的压力降低,也会引起管道和设备振动。应力交递变化,对设备有不利的影响。同时负水锤时,如压力降得过低,可能使管中产生不利的真空,在外界大气压力的作用下,会将管道挤扁。

  (3)防止:为了防止水锤现象的出现,可采取增加阀门启闭时间,尽量缩短管道的长度,以及管道上装设安全阀门或空气室,以限制压力突然升高的数值或压力降得太低的数值。

  保持汽包正常水位是保证锅炉和汽轮机安全运行的重要条件之一。汽包水位过高,会影响汽水分离装置的汽水分离效果,使饱和蒸汽湿度增大,同时蒸汽空间缩小,将会增加蒸汽带水,使蒸汽含盐量增多,品质恶化,造成过热器积盐、超温和汽轮机通流部分结垢。

  汽包水位严重过高或满水时,蒸汽大量带水,会使主汽温度急剧下降,蒸汽管道和汽轮机内发生严重水冲击,甚至造成汽轮机叶片损坏事故。汽包水位过低会使控制循环锅炉的炉水循环泵进口汽化、泵组剧烈振动,汽包水位过低时还会引起锅炉水循环的破坏,使水冷壁管超温过热;严重缺水而又处理不当时,则会造成炉管大面积爆破的重大事故。

  c) 根据汽温情况,及时关小或停止减温器运行,若汽温急剧下降,应开启过热器集箱疏水门,并通知汽轮机开启主汽门前的疏水门。

  d) 当高水位保护动作停炉时,查明原因后,放至点火水位,方可重新点火并列。

  a) 若缺水是由于给水泵故障,给水压力下降而引起,应立即通知汽轮机启动备 用给水泵, 恢复正常给水压力。

  b) 当汽压、给水压力正常时:a 检查水位计指示正确性;b 将给水自动改为手动,加大给水量;c 停止定期排污。

  (1)结焦会引起蒸汽温度偏高:在炉膛大面积结焦时会使炉膛吸热大大减少,炉膛出口烟温过高,使过热器传热强化,造成过热蒸汽温度偏高,导致过热器管超温。

  (2)破坏水循环:炉膛局部结焦以后,使结焦部分水冷壁吸热量减少,循环流速下降,严重时会使循环停滞而造成水冷壁管爆破事故。

  39 、运行过程中为何不宜大开、大关减温水门,更不宜将减温水门关死? ?

  运行过程中,汽温偏离额定值时,是由开大或关小减温水门来调节的。调节时要根据汽温变化趋势,均匀地改变减温水量,而不宜大开大关减温水门,这是因为:

  (1)大幅度调节减温水,会出现调节过量,即原来汽温偏高时,由于猛烈增减温水,调节后跟着会出现汽温偏低;接着又猛烈关减温水门后,汽温又会偏高。结果,使汽温反复波动, 控制不稳。

  (2)会使减温器本身,特别是厚壁部件(水室、喷头)出现交变温差应力,以致使金属疲劳, 出现本身或焊口裂纹而造成事故。

  (3)汽温偏低时,要关小减温水门,但不宜轻易地将减温水门关死。因为,减温水门关死后,减温水管内的水不流动,温度逐渐降低,当再次启用减温水时,低温水首先进入减温器内,使减温器承受较大的温差应力。

  这样连续使用,会使减温器端部、水室或喷头产生烈纹,影响安全运行。为此,减温水停用后如果再次启用,应先开启减温水管的疏水门,放净管内冷水后,再投减温水,不使低温水进入减温器。

  (1)在蒸汽压力降低的同时,蒸汽流量表指示增大,说明外界对蒸汽的需要量增大;在蒸汽压力升高的同时,蒸汽流量减小,说明外界蒸汽需要量减小,这些都属于外扰。也就是说, 当蒸汽压力与蒸汽流量变化方向相反时,蒸汽压力变化的原因是外扰。

  (2)在蒸汽压力降低的同时,蒸汽流量也减小,说明炉内燃料燃烧供热量不足导致蒸发量减小;在蒸汽压力升高的同时,蒸汽流量也增大,说明炉内燃烧供热量偏多,使蒸发量增大, 这都属于内扰。即蒸汽压力与蒸汽流量变化方向相同时,蒸汽压力变化的原因是内扰。

  需要指出的是:对于单元机组,上述判断内扰的方向仅适应于工况变化初期,即仅适用于汽轮机调速汽门未动作之前;而在调速汽门动作之后,锅炉汽压与蒸汽流量变化方向是相反的, 故运行中应予注意。

  造成上述特殊情况的原因是:在外界负荷不变而锅炉燃烧量突然增大(内扰),初在蒸汽压力上升的同时,蒸汽流量也增大,汽轮机为了维持额定转速,调速汽门将关小,这时,汽压将继续上升,而蒸汽流量减小,也就是蒸汽压力与流量的变化方向成为相反。

  (1)母管制系统锅炉启动时,将压力和温度均符合规定的蒸汽送入母管的过程,称并汽或并炉。

  1) 锅炉压力应略低于母管压力,一般中压锅炉低于 0。1~0。2MPa;高压锅炉低于 0。2~0。2MPa。

  若锅炉压力高于母管,并炉后立即有大量蒸汽流入母管,将使启动锅炉压力突然降低,造成饱和蒸汽带水;若锅炉压力低于母管压力太多,并炉后母管中的蒸汽将反灌进入锅炉,使系统压力下降,而启动锅炉压力突然升高,这对热力系统及锅炉的安全性、经济性都是不利的。

  2) 锅炉出口汽温应比母管汽温低些,一般可低 30~60℃,目的是避免并炉后因燃烧加强, 而使汽温超过额定值。但锅炉出口汽温也不能太低,否则,在并炉后会引起系统温度下降, 严重时启动锅炉还可能发生蒸汽带水现象。

  3) 并炉前启动锅炉汽包水位应维持在-50mm,以免在并炉时发生蒸汽带水现象。

  在对流过热器中,烟气与管壁外的换热方式主要是对流换热,对流换热不仅与烟气的温度,而且与烟气的流速有关。

  当锅炉负荷增加时,燃料量增加烟气量增多,通过过热器的烟气流速相应增加,因而提高了烟气侧的对流放热系数;同时,当锅炉负荷增加时,炉膛出口烟气温度也升高,从而提高了过热器平均温差。

  虽然流经过热器的蒸汽流量随锅炉负荷的而增加,其吸热量也增多;但是,由于传热系数和平均温差同时增大,使过热器传热量的增加大于蒸汽流量增加而要增加的吸热量。因此,单位蒸汽所获得的热量相对增多,出口汽温也就相对升高。

  (1)当汽压升高时,过热蒸汽温度升高;汽压降低时,过热汽温降低。这是因为当汽压升高时,饱和温度随之升高,则从水变为蒸汽需消耗更多的热量;在燃料量未改变的情况下,由于压力升高,锅炉的蒸发量瞬间降低,导致通过过热器的蒸汽量减少, 相对蒸汽吸热量增大,导致过热汽温升高,反之亦然。

  (2)上述现象只是瞬间变化的动态过程,定压运行当汽压稳定后汽温随汽压的变化与上述现象相反。主要原因为:

  1) 汽压升高时过热热增大,加热到同样主汽温度的每公斤蒸汽吸热量增大,在烟气侧放热量一定时主汽温度下降。

  2) 汽压升高时,蒸汽的定压比热 Cp 增大,同样蒸汽吸收相同热量时,温升减小。

  4) 汽压升高时,蒸汽的饱和温度增大,与烟气的传热温差减小,传热量减小。

  造成受热面热偏差的原因是吸热不均、结构不均、流量不均。受热面结构不一致,对吸热量、流量均有影响,所以,通常把产生热偏差的主要原因归结为吸热不均和流量不均两个方面。

  1) 沿炉宽方向烟气温度、烟气流速不一致,导致不同位置的管子吸热情况不一样。

  4) 对流过热器或再热器,由于管子节距差别过大, 或检修时割掉个别管子而未修复,形成烟气“走廊”,使其邻近的管子吸热量增多。

  1) 并列的管子,由于管子的实际内径不一致(管子压扁、焊缝处突出的焊瘤、杂物堵塞等),长度不一致,形状不一致(如弯头角度和弯头数量不一样),造成并列各管的流动阻力大小不一样,使流量不均。

  2) 联箱与引进引出管的连接方式不同,引起并列管子两端压差不一样,造成流量不均。现代锅炉多采用多管引进引出联箱,以求并列管流量基本一致。

  不同部位的漏风对锅炉运行造成的危害不完全相同。但不管什么部位的漏风,都会使气体体积增大,使排烟热损失升高,使吸风机电耗增大。如果漏风严重,吸风机已开到还不能维持规定的负压(炉膛、烟道),被迫减小送风量时,会使不完全燃烧热损失增大,结渣可能性加剧,甚至不得不限制锅炉出力。

  炉膛下部及燃烧器附近漏风可能影响燃料的着火与燃烧。由于炉膛温度下降,炉内辐射传热量减小,并降低炉膛出口烟温。炉膛上部漏风,虽然对燃烧和炉内传热影响不大,但是炉膛出口烟温下降,对漏风点以后的受热面的传热量将会减少。

  对流烟道漏风将降低漏风点的烟温及以后受热面的传热温差,因而减小漏风点以后受热面的吸热量。由于吸热量减小,烟气经过更多受热面之后,烟温将达到或超过原有温度水平,会使排烟热损失明显上升。

  综上所述,炉膛漏风要比烟道漏风危害大,烟道漏风的部位越靠前,其危害越大。空气预热器以后的烟道漏风,只使引风机电耗增大。

  (1)锅炉设备中的热损失。表示锅炉设备中的热损失程度或表示锅炉完善程度,用锅炉效率来表示,符号为 gl。

  (3)汽轮机中的热损失。汽轮机各项热损失是用汽轮机相对效率 ni 来表示。

  (6)蒸汽在凝汽器的放热损失。此项损失与理想热力循环的形式及初参数、终参数有关,用理想循环热效率 r 来表示。

  火力发电厂中存在着蒸汽和凝结水的损失,简称汽水损失。汽水损失是全厂性的技术经济指标。它主要是指阀门、管道泄漏、疏水、排汽等损失。汽水损失也可用汽水损失率来表示:汽水损失率=(全厂汽水损失)/(全厂锅炉过热蒸汽流量)×发电厂的汽水损失分为内部损失和外部损失两部分:

  1) 主机和辅机的自用蒸汽消耗。如锅炉受热面的吹灰、重油加热用汽、重油油轮的雾化蒸汽、汽轮机启动抽汽器、轴封外漏蒸汽等。

  4) 经常性和暂时性的汽水损失。如锅炉连污、定排,开口水箱的蒸发、除氧器的排汽、锅炉安全门动作,以及化学监督所需的汽水取样等。

  5) 热力设备启动时用汽或排汽,如锅炉启动时的排汽、主蒸汽管道和汽轮机的暖管、暖机等。

  发电厂外部损失的大小与热用户的工艺过程有关,它的数量取决于蒸汽凝结水是否可以返回电厂,以及使用汽水的热用户对汽水污染情况。

  1) 提高检修质量,加强堵漏、消漏,压力管道的连续尽量采用焊接,以减少泄漏。

  在较低负荷下,锅炉效率随负荷增加而提高,达到某一负荷时,锅炉效率为值,此为经济负荷,超过该负荷后,锅炉效率随负荷升高而降低。这是因为在较低负荷下当锅炉负荷增加时,燃料量风量增加,排烟温度升高,造成排烟损失 q2 增大;另外锅炉负荷增加时,炉膛温度也升高,提高了燃烧效率,使化学不完全燃烧损失 q3 和机械不完全燃烧损失 q4 及炉膛散热损失 q5 减小,在经济负荷以下时 q3+q4+q5 热损失的减小值大于 q2 的增加值,故锅炉效率提高。当锅炉负荷增大到经济负荷时 q2+q3+q4+q5 热损失达小锅炉效率提高。超过经济负荷以后会使燃料在炉内停留的时间过短,没有足够的时间燃尽就被带出炉膛,造成q3+q4 热损失增大,排烟损失 q2 总是增大,锅炉效率也会降低。

  滑参数启动是锅炉、汽轮机的联合启动,或称整套启动。它是将锅炉的升压过程与汽轮机的暖管、暖机、冲转、升速、并网、带负荷平行进行的启动方式。启动过程中, 随着锅炉参数的逐渐升高,汽轮机负荷也逐渐增加,待锅炉出口蒸汽参数达到额定值时,汽轮机也达到额定负荷或预定负荷,锅炉、汽轮机同时完成启动过程。

  启动前从锅炉到汽轮机的管道上的阀门全部打开,疏水门、空气门全部关闭。投入抽气器,使由汽包到凝汽器的空间全处于真空状态。锅炉点火后,一有蒸汽产生,蒸汽即通过过热器、管道进入汽轮机,进行暖管、暖机。当汽压达到 0.1MPa(表压)时,汽轮机即可冲转。当汽压达到 0.6~1.0MPa(表压)时,汽轮机达额定转速,可并网开始带负荷。

  锅炉先点火升压,待汽轮机主汽门前主蒸汽的压力和温度达到预定的冲转参数时再冲动汽轮机,然后随着蒸汽参数不断提高逐步升速、暖机、全速、并网带负荷直至额定值。

  滑参数启动适用于单元制机组或单母管切换制机组,目前,大多数发电厂采用压力法进行滑参数启动,而很少使用真空法进行滑参数启动。

  锅炉启动前的进水速度不宜过快,一般冬季不少于 4h,其他季节 2~3h, 进水初期尤应缓慢。冷态锅炉的进水温度一般在 50-90℃,以使进入汽包的给水温度与汽包壁温度的差值不大于 40℃。未完全冷却的锅炉,进水温度可比照汽包壁温,一般差值应控制在 40℃以内,否则应减缓进水速度。原因是:

  (1) 由于汽包壁较厚,膨胀缓慢,而连接在汽包壁上的管子壁较薄,膨胀较快。若进水温度过高或进水速度过快,将会造成膨胀不均,使焊口发生裂纹,造成设备损坏。

  (2) 当给水进入汽包时,总是先与汽包下半壁接触,若给水温度与汽包壁温差值过大,进水时速度又快,汽包的上下壁,内外壁将产生较大的膨胀差,给汽包造成较大的附加应力,引起汽包变形,严重时产生裂纹。

  (1)汽水系统检查。所有阀门及操作装置应完整无损,动作灵活,并正确处于启动前应该开启或关闭的状态,管道支吊架应牢固;有关测量仪表处于工作状态。

  (2)锅炉本体检查。炉膛内、烟道内检修完毕,无杂物,无人在工作,所有门、孔完好,处于关闭状态;各膨胀指示器完整,并校对其零位。

  (4)转动机械检查。地脚螺栓及安全防护罩应牢固;润滑油质量良好,油位正常;冷却水畅通,试运行完毕,接地线应牢固,电动机绝缘合格。

  (6)燃油系统及点火系统检查。系统中各截门处于应开或应关的位置,电磁速断阀经过开关试验;点火设备完好,处于随时可以启用的状态。

  (2)按锅炉升压曲线格控制升压速度,尤其是低压阶段的升压速度应力求缓慢,这是防止汽包上下壁温差过大的重要和根本措施,加热速度应控制炉水饱和温度升温率 28—56℃/h,饱和蒸汽温度上升速度不应超过 1.5℃/min。

  锅炉启动初期及整个启动过程升压速度应缓慢、均匀,并严格控制在规定范围内。对于高压及超高压汽包锅炉启动过程一般控制升压速度 0。02~0。03 MPa/min;升压初期,由于只有少数燃烧器投入运行,燃烧较弱,炉膛火焰充满程度较差,对蒸发受热面的加热不均匀程度较大;另一方面由于受热面和炉墙的温度很低,因此燃料燃烧放出的热量中,用于使炉水汽化的热量并不多,压力越低,汽化潜热越大,故蒸发面产生的蒸汽量不多,水循环未正常建立,不能从内部来促使受热面加热均匀。

  这样,就容易使蒸发设备,尤其是汽包产生较大的热应力,所以,升压的开始阶段,温升速度应较慢。此外,根据水和蒸汽的饱和温度与压力之间的变化可知,压力越高,饱和温度随压力而变化的数值越小;压力越低,饱和温度随压力而变化的数值越大,因而造成温差过大使热应力过大。所以为避免这种情况,升压的持续时间就应长些。

  在升压的后阶段,虽然汽包上下壁、内外壁温差已大为减小,升压速度可比低压阶段快些, 但由于工作压力的升高而产生的机械应力较大,因此后阶段的升压速度也不要超过规程规定的速度。

  由以上可知,在锅炉升压过程中,升压速度太快,将影响汽包和各部件的安全,因此升压速度不能太快。

  (1)主蒸汽压力。应综合机炉两方面及旁路系统的因素来考虑,要从便于维持启动参数的稳定出发,使进入汽缸的蒸汽流量应能满足汽机顺利通过临界转速和带初始负荷的要求,同时为使金属各部分加热均匀,增大蒸汽的容积流量,冲转蒸汽压力应尽量选择低一些。

  (2)蒸汽温度。应能避免启动初期对金属部件的热冲击;同时防止蒸汽过早进入湿蒸汽区而造成的凝结放热及末几级叶片的水蚀,要有足够高的过热度;总之蒸汽温度应与温度相匹配。

  (3)凝汽器真空。冲转瞬间大量蒸汽进入汽轮机内,因蒸汽的凝结需要有个过程,所以真空会有所降低,如果真空过低在冲转瞬间就会有低压缸安全门动作的危险,同时排汽温度大幅度升高,使凝汽器铜管急剧膨胀,造成胀口松弛而泄漏。

  过高的真空也是不必要的,在其它冲转参数都具备时仅仅为了等真空上来,必然会延迟机组冲转时间;另外真空过高冲动汽轮机所需的蒸汽量减少,达不到良好的暖机效果从而延长暖机时间。

  (1)锅炉启动过程中要根据工况的改变,分析蒸汽温度的变化趋势,应特别注意对过热器中间点及再热蒸汽减温后温度监视,尽量使调整工作恰当的做在蒸汽温度变化之前;

  (2)一级减温水一般不投,即使投入也要慎重,二级减温水不投或少投,视各段壁温和汽温情况配合调整,控制各段壁温和蒸汽温度在规定范围内,防止大开减温水,使汽温骤降;

  (5)燃烧调整上力求平稳、均匀,以防引起汽温骤降,确保设备安全经济运行。

  (1)正常停炉:按照计划,锅炉停炉后要处于较长时间的备用,或进行大修、小修等。这种停炉需按照降压曲线,进行减负荷、降压,停炉后进行均匀缓慢的冷却,防止产生热应力。

  (2)热备用锅炉:按照调度计划,锅炉停止运行一段时间后,还需启动继续运行。这种情况锅炉停下后,要设法减小热量散失,尽可能保持一定的汽压,以缩短再次启动时的时间。

  (3)紧急停炉:运行中锅炉发生重大事故,危及人身及设备安全,需要立即停止锅炉运行。紧急停炉后,往往需要尽快进行检修,以消除故障,所以需要适当加快冷却速度。

  58 、锅炉停炉过程中汽包上下壁温差是如何产生的? ? 如何控制汽包上下壁温差? ?

  锅炉停炉过程中,蒸汽压力逐渐降低,温度逐渐下降,汽包壁是靠内部工质的冷却而逐渐降温的。

  压力下降时,饱和温度也降低,与汽包上壁接触的是饱和蒸汽,受汽包壁的加热,形成一层微过热的蒸汽,其对流换热系数小,即对汽包壁的冷却效果很差,汽包壁温下降缓慢。

  与汽包下壁接触的是饱和水,在压力下降时,因饱和温度下降而自行汽化一部分蒸汽,使水很快达到新的压力下的饱和温度,其对流换热系数高,冷却效果好,汽包下壁能很快接近新的饱和温度。这样出现汽包上壁温度高于下壁的现象。

  压力越低,降压速度越快,这种温差就越明显。停炉过程中汽包上、下壁温差的控制标准为有关规程规定:汽包上、下壁允许温差为40℃,不超过 50℃,为使上、下壁温差不超限,一般采取如下措施:

  (3)锅炉停炉后,一般要保持满水冷却。采用上水和放水的方式串水,汽包的降温降压速度不能过快,密闭炉膛、烟道,关闭有关的档板及观察门、人孔门等。

  对于需停炉放水检修的锅炉,停炉 6 小时前各孔门及烟道挡板关闭,禁止通风,停炉8~10 小时后可开启空预器风、烟挡板,引风机静叶及进、出口挡板,送风机动叶、送风机出口挡板及二次风分门进行自然通风。

  需要时开启烟道和燃烧室的人孔、看火孔、打焦门等,增强自然通风,停炉 18 小时后,汽包上下壁温差小于 40℃,根据检修需要可启动引风机快冷(微正压锅炉启动送风机),若汽包上下壁温差大于 40℃,应间断启动引风机运行,当锅水温度不超过 80℃时,可将锅水放净。

  特殊情况下,熄火后 8 小时,汽包上、下壁温差不大于 40℃前提下,可以采用“串水”方式进行加速冷却。利用余热烘干法防腐时,压力降至 0.8MPa,汽包上、下壁温差不大于 40℃时,可采取以下方式将炉水放尽。

  炉膛负压是运行中要控制和监视的重要参数之一。监视炉膛负压对分析燃烧工况、烟道运行工况,分析某些事故的原因均有重要意义,如:当炉内燃烧不稳定时,烟气压力产生脉动,炉膛负压表指针会产生大幅度摆动;当炉膛发生灭火时,炉膛负压表指针会迅速向负方向甩到底,比水位计、蒸汽压力表、流量表对发生灭火时的反应还要灵敏。烟气流经各对流受热面时,要克服流动阻力,故沿烟气流程烟道各点的负压是逐渐增大的。

  在不同负荷时,由于烟气变化,烟道各点负压也相应变化。如负荷升高,烟道各点负压相应增大,反之,相应减小。在正常运行时,烟道各点负压与负荷保持一定的变化规律;当某段受热面发生结渣、积灰或局部堵灰时,由于烟气流通断面减小,烟气流速升高,阻力增大, 于是其出入口的压差增大。故通过监视烟道各点负压及烟气温度的变化,可及时发现各段受热面积灰、堵灰、漏泄等缺陷,或发生二次燃烧事故。

  运行中如果出现燃烧控制不当、火焰上移、炉膛出口烟温高或炉内热负荷偏差大、风量不足燃烧不完全引起烟道二次燃烧、局部积灰、结焦、减温水投停不当、启停及事故处理不当等情况都会造成受热面超温。

  1) 要严格按运行规程规定操作,锅炉启停时应严格按启停曲线进行,控制锅炉参数和各受热面管壁温度在允许范围内,并严密监视及时调整,同时注意汽包、各联箱和水冷壁膨胀是否正常。

  2) 要提高自动投入率,完善热工表计,灭火保护应投入闭环运行,并执行定期校验制度。严密监视锅炉蒸汽参数、流量及水位,主要指标要求压红线运行,防止超温超压、满水或缺水事故发生。

  3) 应了解近期内锅炉燃用煤质情况,做好锅炉燃烧的调整,防止汽流偏斜,注意控制煤粉细度,合理用风,防止结焦,减少热偏差,防止锅炉尾部再燃烧。加强吹灰和吹灰器的管理,防止受热面严重积灰,也要注意防止吹灰器漏水、漏汽和吹坏受热面管子。

  4) 注意过热器、再热器管壁温度监视,在运行上尽量避免超温。保证锅炉给水品质正常及运行中汽水品质合格。

  (1)为保证锅炉运行的经济性与安全性,运行中应对锅炉进行严格的监视与必要的调节。对锅炉进行监视的主要内容为:主蒸汽压力、温度;再热蒸汽压力、温度;汽包水位:各受热面管壁温度,特别是过热器与再热器的壁温;炉膛压力等。

  2) 根据负荷需要均衡给水。对于汽包锅炉,要维持正常的汽包水位±50mm。

  3) 保证蒸汽压力、温度在正常范围内。对于变压运行机组,则应按照负荷变化的 需要,适时地改变蒸汽压力。

  (1) 受热面温度的影响。当受热面温度太低时,烟气中的水蒸气或硫酸蒸汽在受热面上发生凝结,将会使飞灰粘在受热面上。

  (2) 烟气流速的影响。如果烟气流速过低,很容易发生受热面堵灰,但流速过高,受热面磨损严重。

  (3) 飞灰颗粒大小的影响。飞灰颗粒越小,则相对表面积越大,也就越容易被吸附到金属表面上。

  (4) 气流工况和管子排列方式的影响。当速度增加,错列管束气流扰动大,管子上的松散积灰易被吹走,错列管子纵向节距越小,气流扰动大,气流冲刷作用越强,管子积灰也就越少,相反,顺列管束中,除排管子外,均会发生严重积灰。

  (1)因为排烟热损失是锅炉各项热损失中的一项,一般为送入热量的 6%左右;排烟温度每增加 12~15℃,排烟热损失增加 1%,;同时排烟温度可反应锅炉的运行情况,所以排烟温度应是锅炉运行中重要的指标之一,必须重点监视。

  锅炉受热面的腐蚀有承压部件内部的锅内腐蚀、机械腐蚀和高温及低温腐蚀四种。

  2) 组织好燃烧,在炉内创造良好的燃烧条件,保证燃料迅速着火,及时燃尽,特别是防止一次风冲刷壁面;使未燃尽的煤粉尽可能不在结渣面上停留;合理配风,防止壁面附近出现还原气体等。

  滑参数停炉,实质上是锅炉、汽轮机联合停止运行。机组由额定参数、负荷工况下,用逐步降低锅炉汽压、汽温的方法,使汽轮机逐步减低负荷,当汽压、汽温降到一定数值(具体数值各厂有不同的规定)后,可将锅炉灭火。锅炉灭火后,汽轮机可利用锅炉余热所产生的低温低压蒸汽继续发电。

  一般待汽压接近零时,才解列发电机。在整个机组的降压、减负荷过程中,是根据汽轮机降负荷时对汽温、汽压的要求,由锅炉通过调整燃烧来实现的。当然,降压、降温速度也要考虑锅炉自身冷却的需要。对于高参数大容量机组,过热汽温下降速度控制在 1-1.5℃/min;再热汽温下降速度控制在 2℃/min。

  (2) 提高了安全性。在降负荷过程中,蒸汽参数虽然逐渐降低,但仍有较大的容积流量,对部件的冷却效果较好。所以滑参数停炉对锅受热面的保护,对减小汽包上、下壁温差,对减小汽轮机汽缸上、下温度差,对减小汽轮机动、静部分胀差均有好处。

  (3) 提高了停炉的经济性主要是利用了排掉蒸汽的时间和冷却设备的时间进行发电,以及减少工质损失和热量损失等。
想了解更多详情,请访问:蒸汽锅炉,热水锅炉,燃气锅炉,导热油锅炉,有机热载体锅炉-镇江海太锅炉制造全球彩票开户官网http://www.sjyxsbcp.com

 
 
返 回
全球彩票开户 | 公司简介 | 产品中心 | 公司动态 | 成功案例 | 企业资质 | 全球彩票开户


版权所有 © 2017 版权所有 镇江海太锅炉制造全球彩票开户
技术支持: 备案号:


网站地图
广西快3开奖 贵州11选5 河北11选5走势图 优优彩票APP 贵州11选5 聚沙彩票开户 彩票高賠率好平台 北京赛车pk10APP网资讯 千诚彩票注册 快乐赛车怎么能接代理